332,167 views
7 votes
7 votes
Evaluate arithmetic series:-

Step-by-step answer, please!

Evaluate arithmetic series:- Step-by-step answer, please!-example-1
User Jasmyne
by
2.5k points

2 Answers

16 votes
16 votes

Let's see


\\ \rm\Rrightarrow {\displaystyle{\sum^(275)_(k=1)}}(-5k+12)


\\ \rm\Rrightarrow (-5(1)+12)+(-5(2)+12)\dots (-5(275)+12)


\\ \rm\Rrightarrow 7+5+3+2+1+\dots -1363

So

  • a=7
  • l=-1363
  • n=275

Sum:-


\\ \rm\Rrightarrow S_n=(n)/(2)[a+l]


\\ \rm\Rrightarrow (275)/(2)(7-1363)


\\ \rm\Rrightarrow (275)/(2)(-1356)


\\ \rm\Rrightarrow 275(-678)


\\ \rm\Rrightarrow -186450

User Huntley
by
2.9k points
13 votes
13 votes

Answer:

-186,450

Explanation:

Sum of arithmetic series formula


S_n=(n)/(2)[2a+(n-1)d]

where:

  • a is the first term
  • d is the common difference between the terms
  • n is the total number of terms in the sequence


\displaystyle \sum\limits_(k=1)^(275) (-5k+12)

To find the first term, substitute
k = 1 into
(-5k+12)


a_1=-5(1)+12=7

To find the common difference, find
a_2 then subtract
a_1 from
a_2:


a_2=-5(2)+12=2


\begin{aligned}d & =a_2-a_1\\ & =2-7\\ & =-5\end{aligned}

Given:


  • a=7

  • d=-5

  • n=275


\begin{aligned}S_(275) & = (275)/(2)[2(7)+(275-1)(-5)]\\& = (275)/(2)[14-1370]\\& = (275)/(2)[-1356]\\& = -186450\end{aligned}

User Sudhanshu Mishra
by
3.1k points