Answer:
Minimum
Explanation:
The zeros of a quadratic equation are the points at which the parabola intersects the x-axis.
![\sf x=3 \implies x-3=0](https://img.qammunity.org/2023/formulas/mathematics/college/x1oyfqu13usbshosai0kavgf0aveqo1yyh.png)
![\sf x=7 \implies x-7=0](https://img.qammunity.org/2023/formulas/mathematics/college/m5gppci4x5zahjvgy72q59xxeyrsy3vwmg.png)
(for some constant a)
![\sf \implies y=ax^2-10ax+21a](https://img.qammunity.org/2023/formulas/mathematics/college/nrhwfntks0e54jycxumn8icvcgfq0ltiqd.png)
The optimal value is the y-coordinate of the vertex.
![\sf \implies vertex=(x,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/bnqtgtx204ix5r4iwp94m5zhfn7ouoqqa0.png)
The x-coordinate of the vertex is the midpoint of the zeros:
![\sf x=(7-3)/(2)+3=5](https://img.qammunity.org/2023/formulas/mathematics/college/8xknwbplk798q83c4dd3uj3jri1u6bqhrd.png)
![\sf \implies vertex=(5,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/oz0z3n0wjbu4upg9yvpxwjq55ozjced3it.png)
Therefore, the vertex will be in Quadrant IV and so the parabola opens upwards into Quadrant I.
So the optimal value is a MINIMUM since the vertex is the minimum point of the curve.
Additional Information to create the equation of the quadratic
Vertex form of quadratic equation:
![\sf y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/3l03d3frl9nd6qrev3md20wi68urudhtrl.png)
where (h, k) is the vertex
![\sf \implies y=a(x-5)^2-3](https://img.qammunity.org/2023/formulas/mathematics/college/nh49aj4jno7g2w336eua7eopcr4b7qm3b5.png)
![\sf \implies y=ax^2-10ax+25a-3](https://img.qammunity.org/2023/formulas/mathematics/college/gwqg4ygymuakigggljb4gvgn31frz1r617.png)
To find the value of a, compare the constants of both equations:
![\sf 21a=25a-3](https://img.qammunity.org/2023/formulas/mathematics/college/en66f0nsv1xfpyxyv5f293x0a8en4fyf3b.png)
![\sf \implies -4a=-3](https://img.qammunity.org/2023/formulas/mathematics/college/4rn6ne4ghb0xn77nf1nde9h2t9ckb776gc.png)
![\sf \implies a=\frac34](https://img.qammunity.org/2023/formulas/mathematics/college/kcafm8gsd4i5aezk89lpxbbdiyy3yf605v.png)
So the final equation is:
![\sf factor \ form \implies y=\frac34(x-3)(x-7)](https://img.qammunity.org/2023/formulas/mathematics/college/j07k6v021p2m59rkx6r414lrkx8tsuo3sw.png)
![\sf vertex \ form \implies y=\frac34(x-5)^2-3](https://img.qammunity.org/2023/formulas/mathematics/college/ka647ixz7xtjb15fwa17je9n4oms5x1ccn.png)