19.4k views
4 votes
I really need help oof-

Angle α lies in quadrant II, and tanα=−12/5 . Angle β lies in quadrant IV, and cosβ=3/5.

What is the exact value of cos(α−β) ?

Enter your answer in the box.

cos(α−β) = __

1 Answer

7 votes

From the given info (and the linked question) we find


\cos\alpha=-\frac5{13}


\sin\alpha=(12)/(13)


\sin\beta=-\frac45

Then using the angle-sum identity for cosine, we have


\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta


\cos(\alpha-\beta)=\left(-\frac5{13}\right)\frac35+(12)/(13)\left(-\frac45\right)=-(63)/(65)

User Alexandre Annic
by
3.1k points