113k views
0 votes
The op amp in this circuit is ideal. R3 has a maximum value of 100 kΩ and σ is restricted to the range of 0.2 ≤ σ ≤ 1.0. a. Calculate the range of vO if vI = 40 mV. b. If σ is not restricted, at what value of σ will the operational amplifier saturate?

User IBhavin
by
3.1k points

1 Answer

6 votes

I have attached the circuit image missing in the question.

Answer:

A) The range of vo is; -6.6V≤ vo ≤-1V

B) σ = 0.1861

Step-by-step explanation:

A) First of all, Let VΔ be the voltage from the potentiometer contact to the ground.

Thus; [(0 - vg)/(2000)] +[(0 - vΔ)/(50,000)] = 0

So, [(- vg)/(2000)] +[(- vΔ)/(50,000)] = 0

Simplifying further; -25 vg - vΔ = 0

From the question, vg = 40mV = 0.04 V

So - 25(0.04) = vΔ

So: vΔ = - 1 V

Now, [vΔ/(σRΔ)] + [(vΔ - 0)/(50,000)] + [(vΔ - vo)/((1 - σ)RΔ))] = 0

So, multiplying each term by RΔ to get; [vΔ/(σ)] + [(vΔ x RΔ)/(50,000)] + [(vΔ - vo)/((1 - σ))] = 0

So RΔ = 100kΩ or 100,000Ω from the question.

So, substituting for RΔ, we get,

[vΔ/(σ)] + [2vΔ] + [(vΔ - vo)/((1 - σ))] = 0

Let's put the value of - 1 for vΔ as gotten before.

So, ( - 1/σ) - 2 + [(-1 - vo)/(1 - σ)] = 0

Now let's make vo the subject of the equation to get;

-1 - vo = (1 - σ)[2 + (1/σ)]

-1 - vo = 2 - 2σ + (1/σ) - 1

-vo = 1 + 2 - 2σ + (1/σ) - 1

-vo = 2 - 2σ + (1/σ)

vo = - 1 (2 - 2σ + (1/σ))

When σ = 0.2; vo = - 1(2 - 0.4 + 5) =

- 1 x 6.6 = - 6.6V

Also when σ = 1;

vo = - 1(2 - 2 + 1) = - 1V

Therefore, the range of vo is;

- 6.6V ≤ vo ≤ - 1V

B) it will saturate at vo = - 7V

So, from;

vo = - 1 (2 - 2σ + (1/σ))

-7 = - 1 (2 - 2σ + (1/σ))

Divide both sides by (-1)

7 = (2 - 2σ + (1/σ))

Now, subtract 2 from both sides to get; 5 = - 2σ + (1/σ)

Multiply each term by α to get;

5σ = - 2σ^(2) + 1

So 2σ^(2) + 5σ - 1 = 0

Solving simultaneously and picking the positive value , we get σ to be approximately 0.1861

The op amp in this circuit is ideal. R3 has a maximum value of 100 kΩ and σ is restricted-example-1
User Jakov
by
4.2k points