Answer:
α= 133.6 degrees
(a)Sin(α/2)=0.9191
(b)cos(α/2)=0.3939
(c)Tan(α/2)=2.3332
Explanation:
If Tan α=
![-(21)/(20)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rfydsx5u9hp5drixsy59bku3agd4p910o0.png)
90<α<180
We determine first the value of α in the first quadrant
α=
![Tan^(-1)(21)/(20)](https://img.qammunity.org/2021/formulas/mathematics/college/r7ftgzozgn0vhiyocffedc8uw6rog15drq.png)
=46.4
Since 90<α<180
α=180-46.4=133.6 degrees
(a)Sin(α/2)=Sin(133.6/2)=Sin 66.8 =0.9191
(b)cos(α/2)=cos(133.6/2)=cos 66.8 =0.3939
(c)Tan(α/2)=Tan(133.6/2)=Tan 66.8 =2.3332