144k views
5 votes
The function f is defined by f(x) = x2 - 6x +21.

What are the solutions of f(x) = 0?
Show your work on the scratchpad.

User Dfedde
by
4.7k points

1 Answer

6 votes

The solutions are:


x =3+2√(3)i\\\\\:x=3-2√(3)i

Solution:


f(x) = x^2 - 6x + 21

We have to find solutions when f(x) = 0


x^2 - 6x + 21 = 0

Solve by quadratic formula


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x=(-b\pm √(b^2-4ac))/(2a)\\\\\mathrm{For\:}\quad a=1,\:b=-6,\:c=21\\\\x=(-\left(-6\right)\pm √(\left(-6\right)^2-4\cdot \:1\cdot \:21))/(2\cdot \:1)


x = (6 \pm √(\left(-6\right)^2-4\cdot \:1\cdot \:21))/(2\cdot \:1)\\\\Simplify\\\\x = (6 \pm √(36 - 84))/(2)\\\\x = (6 \pm √(-48))/(2)\\\\x = (6 \pm i √(48))/(2)\\\\simplify\\\\x = (6 \pm 4√(3)i)/(2)\\


x = 3 \pm 2 √(3) i

We have two solutions:


x = 3 + 2 √(3) i\\\\x = 3 - 2 √(3) i

Thus the solutions are:


x =3+2√(3)i\\\\\:x=3-2√(3)i

User Longbkit
by
4.6k points