Answer:
a)
![\alpha = 3, \beta = 2](https://img.qammunity.org/2021/formulas/mathematics/college/v1f8fakl10l19c4w1wz0t608f08zjx81ja.png)
b) 0.0620
Explanation:
We are given the following in the question:
Population mean,
= 6
Variance,
= 12
a) Value of
![\alpha, \beta](https://img.qammunity.org/2021/formulas/mathematics/college/dl4onvdmhjjvxgag0zrbo8i75fljcux1h1.png)
We know that
![\alpha \beta = \mu = 6\\\alpha \beta^2 = \sigma^2 = 12](https://img.qammunity.org/2021/formulas/mathematics/college/l4x3nny0fcs5us42qdcoanlvnfx6e4gg1e.png)
Dividing the two equations, we get,
![(\alpha\beta^2)/(\alpha\beta) = (12)/(6)\\\\\Rightarrow \beta = 2\\\alpha \beta = 6\\\Rightarrow \alpha = 3](https://img.qammunity.org/2021/formulas/mathematics/college/m2qp2stzhxdnd9km7igbj5ygg8luvn8szo.png)
b) probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
We can write the probability density function as:
![f(x,3,2) = (1)/(2^(3)(3-1)!)x^(3-1)e^{-(x)/(2)}, x > 0\\\\f(x,3,2) = (1)/(16)x^(2)e^{-(x)/(2)}, x > 0](https://img.qammunity.org/2021/formulas/mathematics/college/lbk4xov85x55q5nwdwus15uew6imml81jw.png)
We have to evaluate:
![P(x >12)\\\\= (1)/(16)\displaystyle\int^(\infty)_(12)f(x)dx\\\\=(1)/(16)\bigg[-2x^2e^{-(x)/(2)}-2\displaystyle\int xe^{-(x)/(2)}dx}\bigg]^(\infty)_(12)\\\\=(1)/(8)\bigg[x^2e^{-(x)/(2)}+4xe^{-(x)/(2)}+8e^{-(x)/(2)}\bigg]^(\infty)_(12)\\\\=(1)/(8)\bigg[(\infty)^2e^{-(\infty)/(2)}+4(\infty)e^{-(\infty)/(2)}+8e^{-(\infty)/(2)} -( (12)^2e^{-(12)/(2)}+4(12)e^{-(12)/(2)}+8e^{-(12)/(2)})\bigg]\\\\=0.0620](https://img.qammunity.org/2021/formulas/mathematics/college/4x52dy61hn0384t29dgohqocipgfj30w2y.png)
0.0620 is the required probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.