The inverse of the function is
![y=-(2)/(7) x+(8)/(7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/966z4vqdgwcycynzq7tigfcjy9wgmi9517.png)
Step-by-step explanation:
The given function is
![f(x)=-(7)/(2) x+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oycffuynmvln0yu981v4udh86e5s0n25tp.png)
To determine the inverse of a function, we need to interchange the variables and solve for y.
Let us interchange the variables x and y
Thus, we have,
![x=-(7)/(2) y+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d3qwamypdagts6rqqcdhxz6d7ciwo3mwfc.png)
Now, we shall solve for y
Subtracting both sides of the equation by 4, we get,
![x-4=-(7)/(2) y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mq6z3b232t337ourwbyk1ah7j77ryefgle.png)
Multiplying both sides of the equation by
, we get,
![-(2)/(7) (x-4)= y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zogvxrtipwt8vz4rf6resssh16m8xzk2wg.png)
Switch sides, we have,
![y=-(2)/(7) (x-4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xc7057dvv382xsv97qjn8ylq9o9hdynztu.png)
Multiplying the terms within the bracket, we have,
![y=-(2)/(7) x+(8)/(7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/966z4vqdgwcycynzq7tigfcjy9wgmi9517.png)
Thus, the inverse of the function is
![y=-(2)/(7) x+(8)/(7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/966z4vqdgwcycynzq7tigfcjy9wgmi9517.png)