218k views
2 votes
Solve each system of linear equations albebraically

answer anyone you want
1.
2.
or
3.


Solve each system of linear equations albebraically answer anyone you want 1. 2. or-example-1
User StefanLdhl
by
4.1k points

1 Answer

5 votes

Explanation:


1.\\\left\{\begin{array}{ccc}y=3x&(1)\\2y=6x&(2)\end{array}\right\\\\\text{Substitute (1) to (2):}\\\\2(3x)=6x\\6x=6x\qquad\text{subtract}\ 6x\ \text{from both sides}\\6x-6x=6x-6x\\0=0\qquad\text{TRUE}\\\\Answer:\ \text{Infinitely many solutions}\\\\\left\{\begin{array}{ccc}y=3x\\x\in\mathbb{R}\end{array}\right


2.\\\left\{\begin{array}{ccc}y=2x+5&(1)\\y-2x=1&(2)\end{array}\right\\\\\text{Substitute (1) to (2):}\\\\(2x+5)-2x=1\\2x+5-2x=1\qquad\text{combine like terms}\\(2x-2x)+5=1\\5=-1\qquad\text{FALSE}\\\\Answer:\ \text{No solution.}


3.\\\left\{\begin{array}{ccc}3x-2y=9\\-6x+4y=1&\text{divide both sides by 2}\end{array}\right\\\underline{+\left\{\begin{array}{ccc}3x-2y=9\\-3x+2y=0.5\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad\qquad0=9.5\qquad\text{FALSE}\\\\Answer:\ \text{No solution.}

User Hengrui Jiang
by
3.7k points