Answer:
the initial height is 90.556 m
Explanation:
neglecting air friction and the height required to accelerate the rock from 0 to 5 ft/s downwards . Then the only acceleration we are counting is the gravity and from the equations of vertical motion we have:
h₁=H+vy*t - 1/2*g*t₁²
h₂=H+vy*t - 1/2*g*t₂²
subtracting the first equation to the second one
h₂-h₁= vy* (t₂-t₁) - 1/2*g*(t₂²-t₁²)
h₂-h₁= vy* (t₂-t₁) - 1/2*g*(t₂-t₁)(t₂+t₁)
denoting Δt= t₂-t₁ and Δh=h₂-h₁
Δh=vy*Δt-1/2*g*Δt*(t₂+t₁)
Δh=vy*Δt- 1/2*g*Δt*(2*t₁+Δt)
1/2*g*Δt*(2*t₁+Δt)=vy*Δt-Δh
2*t₁+Δt= (vy*Δt-Δh)/(1/2*g*Δt)
t₁= (vy*Δt-Δh)/(g*Δt)- Δt/2
replacing values
t₁= (-5ft/s*2 s-(10 ft-90 ft))/(32.2 ft/s²*2 s )- 2 s/2 = 0.087 s
then replacing in the first equation
h₁=H+vy*t - 1/2*g*t₁²
H = h₁ - vy*t + 1/2*g*t₁²
H = 90 ft - (-5ft/s)*0.087 s + 1/2*32.2 ft/s²*(0.087 s)²= 90.556 m
then the initial height is 90.556 m