Option B:
![${f(x)}=9280-20x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9dg51rj11hss5u6m4fewv3pdr1ycr36rmj.png)
Solution:
![$(1)/(16) x+(1)/(320) y-29=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m3834tyhv9y7koyj1imtllt92u0l50bc98.png)
![$(1)/(16) x+(1)/(320) y-(29)/(1) =0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u0li18d70a97ur80pkienhu3qfl4n5h0z4.png)
Take LCM of the denominators and Make the denominators same.
LCM of 16, 320, 1 = 320
![$(1*20)/(16*20) x+(1)/(320) y-(29* 320)/(1* 320) =0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3294sca7gtmztbgxzkljf2j09kgtfesm7j.png)
![$(20)/(320) x+(1)/(320) y-(9280)/(320) =0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ro6iyps1koldhva6387otjxn1x10s88dsj.png)
All the denominators are same, so you can write in one fraction.
![$(20x+y-9280)/(320)=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ra4hutiw8hooaafdwxgll29k3wrl35fdgc.png)
Do cross multiplication.
![${20x+y-9280}=0* 320](https://img.qammunity.org/2021/formulas/mathematics/middle-school/61e3u07882gg6ytm4lb6febvpschvxa0il.png)
![${20x+y-9280}=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f8f1xkguy8n3hk6he2hnf7y7aha1tl6exh.png)
Add 9280 on both sides of the equation.
![${20x+y}=9280](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lwr25ekdcswiu37kt7u83hq0wk1rvc6sbc.png)
Subtract 20x on both sides of the equation.
![${y}=9280-20x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wi6cqzpbf83z88ae2vuo77yk4ab9fpx9id.png)
Let y = f(x).
![${f(x)}=9280-20x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9dg51rj11hss5u6m4fewv3pdr1ycr36rmj.png)
Hence Option B is the correct answer.