99.6k views
1 vote
Which of the equations below could be the equation of this parabola?

Which of the equations below could be the equation of this parabola?-example-1
User Neovibrant
by
4.3k points

1 Answer

4 votes

Answer:


y=-4x^2 is the equation of this parabola.

Explanation:

Let us consider the equation


y=-4x^2


\mathrm{Domain\:of\:}\:-4x^2\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}


\mathrm{Range\:of\:}-4x^2:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)\le \:0\:\\ \:\mathrm{Interval\:Notation:}&amp;\:(-\infty \:,\:0]\end{bmatrix}


\mathrm{Axis\:interception\:points\:of}\:-4x^2:\quad \mathrm{X\:Intercepts}:\:\left(0,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:0\right)

As


\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=a\left(x-m\right)\left(x-n\right)


\mathrm{is\:the\:average\:of\:the\:zeros}\:x_v=(m+n)/(2)


y=-4x^2


\mathrm{The\:parabola\:params\:are:}


a=-4,\:m=0,\:n=0


x_v=(m+n)/(2)


x_v=(0+0)/(2)


x_v=0


\mathrm{Plug\:in}\:\:x_v=0\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}


y_v=-4\cdot \:0^2


y_v=0

Therefore, the parabola vertex is


\left(0,\:0\right)


\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}


\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}


a=-4


\mathrm{Maximum}\space\left(0,\:0\right)

so,


\mathrm{Vertex\:of}\:-4x^2:\quad \mathrm{Maximum}\space\left(0,\:0\right)

Therefore,
y=-4x^2 is the equation of this parabola. The graph is also attached.

Which of the equations below could be the equation of this parabola?-example-1
User Jhanvi
by
4.4k points