216k views
1 vote
A solution is prepared by mixing 2.17 g of an unknown non-electrolyte with 225.0 g of chloroform. The freezing point of the resulting solution is –64.2oC. The freezing point of pure chloroform is – 63.5oC and its kf = 4.68oC m-1. What is the molecular mass of the unknown?

1 Answer

7 votes

Answer:

The molar mass of the unknown non-electrolyte is 64.3 g/mol

Step-by-step explanation:

Step 1: Data given

Mass of an unknown non-electrolyte = 2.17 grams

Mass of chloroform = 225.0 grams

The freezing point of the resulting solution is –64.2 °C

The freezing point of pure chloroform is – 63.5°C

kf = 4.68°C/m

Step 2: Calculate molality

ΔT = i*kf*m

⇒ ΔT = The freezing point depression = T (pure solvent) − T(solution) = -63.5°C + 64.2 °C = 0.7 °C

⇒i = the van't Hoff factor = non-electrolyte = 1

⇒ kf = the freezing point depression constant = 4.68 °C/m

⇒ m = molality = moles unknown non-electrolyte / mass chloroform

0.7 °C = 1 * 4.68 °C/m * m

m = 0.150 molal

Step 3: Calculate moles unknown non-electrolyte

molality = moles unknown non-electrolyte / mass chloroform

Moles unknown non-electrolyte = 0.150 molal * 0.225 kg

Moles unknown non-electrolyte = 0.03375 moles

Step 4: Calculate molecular mass unknown non-electrolyte

Molar mass = mass / moles

Molar mass = 2.17 grams / 0.03375 moles

Molar mass = 64.3 g/mol

The molar mass of the unknown non-electrolyte is 64.3 g/mol

User Steve Waddicor
by
6.5k points