135k views
5 votes
If the differential equation t 2y 00 − 2y 0 + (3 + t)y = 0 has y1(t) and y2(t) as a fundamental set of solutions and if W[y1, y2](2) = 3, find the value of W[y1, y2](6) ?

User MadhaviJ
by
5.6k points

1 Answer

4 votes

In the ODE, solve for
y'':


t^2y''-2y'+(3+t)y=0\implies y''=(2y'+(3+t)y)/(t^2)

The Wronskian is then


W=\begin{vmatrix}y_1&y_2\\{y_1}'&{y_2}'\end{vmatrix}=y_1{y_2}'-{y_1}'y_2

Differentiating the Wronskian gives


W'=({y_1}'{y_2}'+y_1{y_2}'')-({y_1}''y_2+{y_1}'{y_2}')=y_1{y_2}''-{y_1}''y_2

Substitute
y_1,y_2 into the equation for
y'', then substitute
{y_1}'',{y_2}'' into
W':


W'=y_1\frac{2{y_2}'+(3+t)y_2}{t^2}-y_2\frac{2{y_1}'+(3+t)y_1}{t^2}


\implies W'=(2W)/(t^2)

which is another separable ODE; we have


\frac{\mathrm dW}W=\frac2{t^2}\,\mathrm dt\implies \ln|W|=-\frac2t+C\implies W=Ce^(-2/t)

Given that
W(y_1,y_2)(2)=3, we find


3=Ce^(-2/2)\implies C=3e

so that


W(y_1,y_2)(t)=3e^(1-2/t)

and so


W(y_1,y_2)(6)=\boxed{3e^(2/3)}

User Rkellerm
by
6.0k points