233k views
1 vote
Which linear inequality represents the graph below help plss​

Which linear inequality represents the graph below help plss​-example-1
User Robsdedude
by
5.1k points

2 Answers

7 votes

Explanation:

The boundary line goes through (-3,3) and (0,1)

The slope of this line is:


m = (1 - 3)/(0 - - 3) = ( - 2)/(3) = - (2)/(3)

The y-intercept is b=1.

The equation of the boundary line is given by


y = mx + b

Substitute and obtain:


y = - (2)/(3) x + 1

Since boundary line is shaded and the right half-plane of the boundary line is shaded, the corresponding inequality is


y \geqslant - (2)/(3)x + 1

User Raj Raj
by
5.2k points
6 votes

Answer:


y\ge -(2)/(3)x+1 represents the graph. So, option A is true.

Explanation:

Considering the linear inequality


y\ge -(2)/(3)x+1

as


\mathrm{Domain\:of\:}\:-(2)/(3)x+1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

and


\mathrm{Range\:of\:}-(2)/(3)x+1:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}


x-\mathrm{axis\:interception\:points\:of\:}-(2)/(3)x+1:\quad \left((3)/(2),\:0\right)


-(2)/(3)x+1=0:\quad x=(3)/(2)


\left((3)/(2),\:0\right)


y-\mathrm{axis\:interception\:point\:of\:}-(2)/(3)x+1:\quad \left(0,\:1\right)


y=-(2)/(3)\cdot \:0+1


y=-0+1


y=1

Thus,


\mathrm{X\:Intercepts}:\:\left((3)/(2),\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:1\right)


\mathrm{Slope\:of\:}-(2)/(3)x+1:\quad m=-(2)/(3)

Also, (-3, 3) holds true.

as


3\ge \:-(2)/(3)\cdot \left(-3\right)+1


3\ge \:(2)/(3)\cdot \:\:3+1


3\ge \:2+1


3\ge \:3

WHICH IS TRUE!

Therefore,


y\ge -(2)/(3)x+1 represents the graph. So, option A is true.

Which linear inequality represents the graph below help plss​-example-1
User Emmaly
by
4.8k points