381,872 views
4 votes
4 votes
Find the derivative of 9x³ + 4x² + x + 3 at x = 3.

User Rakshit Nawani
by
2.3k points

2 Answers

11 votes
11 votes

Answer:

268

Explanation:

Derivative Rule

  • dy/dx (xⁿ) = nxⁿ⁻¹

On deriving,

  • dy/dx = 9x³ + 4x² + x + 3
  • dy/dx = 27x² + 8x + 1

Substitute x = 3

  • dy/dx = 27(3)² + 8(3) + 1
  • dy/dx = 243 + 24 + 1
  • dy/dx = 268
User Hugh Lin
by
2.5k points
21 votes
21 votes

Solution:

268

=============================


\sf \bold{ \rightarrow } \ y = 9x^3 + 4x^2 + x + 3


\sf \bold{ \rightarrow } \ (dy)/(dx) = (d)/(dx) ( \ 9x^3 + 4x^2 + x + 3 \ )


| | \ \mathrm{ If \ y = x^n , \ then \ (dy)/(dx) = nx^(n-1)} \ | |


\sf derivative \ of \ constant \ is \ always \ 0 \ || \ \sf(d)/(dx)\left(a\right)=0 \ ||

solving step wise


\sf \bold{ \rightarrow } \ (d)/(dx) ( 9x^3) + (d)/(dx)(4x^2) + (d)/(dx)(x )+ (d)/(dx)(3 )


\sf \bold{ \rightarrow } \ \sf ( 3(9x^(3-1)) +2(4x^(2-1)) + (1)(x^(1-1) )+ 0


\sf \rightarrow 27x^2+8x+1+0


\sf \rightarrow 27x^2+8x+1

when x = 3


\sf \hookrightarrow 27(3)^2+8(3)+1


\sf \hookrightarrow 243+24+1


\sf \hookrightarrow 268

User Noslone
by
2.8k points