164k views
1 vote
Need help ASAP

Simplify using only positive exponents

1.) 3^2•3^4

2.) (2x^2)^-4

3.) 2x^4y^-4z^-3
————————-
3x^2y^-3z^4

User Maaachine
by
4.3k points

1 Answer

1 vote

Part (1) : The solution is
729

Part (2): The solution is
$(1)/(16 x^(8))$

Part (3): The solution is
$(2 x^(2))/(3 y z^(7))$

Step-by-step explanation:

Part (1): The expression is
3^(2) \cdot3^(4)

Applying the exponent rule,
$a^(b) \cdot a^(c)=a^(b+c)$, we get,


$3^(2) \cdot 3^(4)=3^(2+4)$

Adding the exponent, we get,


3^(2) \cdot3^(4)=3^6=729

Thus, the simplified value of the expression is
729

Part (2): The expression is
$\left(2 x^(2)\right)^(-4)$

Applying the exponent rule,
$a^(-b)=(1)/(a^(b))$, we have,


$\left(2 x^(2)\right)^(-4)=(1)/(\left(2 x^(2)\right)^(4))$

Simplifying the expression, we have,


(1)/(2^4x^8)

Thus, we have,


$(1)/(16 x^(8))$

Thus, the value of the expression is
$(1)/(16 x^(8))$

Part (3): The expression is
$(2 x^(4) y^(-4) z^(-3))/(3 x^(2) y^(-3) z^(4))$

Applying the exponent rule,
$(x^(a))/(x^(b))=x^(a-b)$, we have,


(2x^(4-2)y^(-4+3)z^(-3-4))/(3)

Adding the powers, we get,


(2x^(2)y^(-1)z^(-7))/(3)

Applying the exponent rule,
$a^(-b)=(1)/(a^(b))$, we have,


$(2 x^(2))/(3 y z^(7))$

Thus, the value of the expression is
$(2 x^(2))/(3 y z^(7))$

User Skarmats
by
4.8k points