Answer:
![y=(5)/(27) x-(1)/(27)](https://img.qammunity.org/2021/formulas/mathematics/college/w0959wby9mzeletxygq5zz3eb03nq5oj41.png)
Explanation:
![f(x)=(2x-1)/(x+7)](https://img.qammunity.org/2021/formulas/mathematics/college/ils9gacanp3pjmhd5y1jt35ym3zq8ldu09.png)
To find slope of f(x) at x=2, find the derivative f'(x)
apply quotient rule to find derivative
![f(x)=(2x-1)/(x+7)\\f'(x)=(2(x+7)-1(2x-1))/((x+7)^2) \\f'(x)=(15)/((x+7)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/4n8treh9r30enqora7ezav0ax7v80i8vmw.png)
f'(x) is the slope . Now find slope at x=2. plug in 2 for x
![f'(x)=(15)/((x+7)^2)\\f'(2)=(15)/((2+7)^2)=(5)/(27)](https://img.qammunity.org/2021/formulas/mathematics/college/q5wvgpt6s1m4ilov5fjhz2w4ai1v8d1oym.png)
find out f(x) when x=2
![f(x)=(2x-1)/(x+7)\\f(2)=(2(2)-1)/(2+7)=(1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/9d3hb45j66nnek2iq39p7le1f22ogoinl7.png)
Now frame the equation of the line
(2,1/3) slope = 5/27
![y-y_1=m(x-x_1)\\y-(1)/(3)=(5)/(27) (x-2)\\y-(1)/(3)=(5)/(27) x-(10)/(27)\\\\y=(5)/(27) x-(1)/(27)\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/ah7gkemu7617w5wi3av9dj20jujhv9obn7.png)