Answer:
Step-by-step explanation:
Two frequencies with magnitude 150 Hz and 750 Hz are given
For Pipe open at both sides
fundamental frequency is 150 Hz as it is smaller
frequency of pipe is given by
![f=(nv)/(2L)](https://img.qammunity.org/2021/formulas/physics/college/78bcu8adkftagnhqmxr5vbu1dopq22ie44.png)
where L=length of Pipe
v=velocity of sound
for n=1
and f=750 is for n=5
thus there are three resonance frequencies for n=2,3 and 4
For Pipe closed at one end
frequency is given by
![f=((2n+1))/(4L)\cdot v](https://img.qammunity.org/2021/formulas/physics/college/lg5cpwvd8m56k24bdyrl9cyu9ml7xgudlz.png)
for n=0
![f_1=(v)/(4L)](https://img.qammunity.org/2021/formulas/physics/college/6pjua835gbirzs54ngx8b4pk3yy3uw6dt9.png)
![f_1=150\ Hz](https://img.qammunity.org/2021/formulas/physics/college/r1nd086hewgcw5szctf5pmze4j1va5e7dq.png)
for n=2
![f_2=(5v)/(4L)](https://img.qammunity.org/2021/formulas/physics/college/dhl7q47ju9n6dorv1nofiwb6pbddhrdpuv.png)
Thus there is one additional resonance corresponding to n=1 , between
and
![f_2](https://img.qammunity.org/2021/formulas/physics/college/p0sxmna6061wocbk9vo552zgc9w02kj4el.png)