Answer:
c=6, d=2
Explanation:
Equations
We must find the values of c and d that make the below equation be true
![\sqrt[3]{162x^cy^5}=3x^2y \sqrt[3]{6y^d}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m00yivtvn893ydyd3saxnnsbd6tq1hgs7d.png)
Let's cube both sides of the equation:
![\left (\sqrt[3]{162x^cy^5}\right )^3=\left (3x^2y \sqrt[3]{6y^d}\right)^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jbvqsblnf8etauyb2hv5drnmg0ubdopjp4.png)
The left side just simplifies the cubic root with the cube:
![162x^cy^5=\left (3x^2y \sqrt[3]{6y^d}\right)^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6e3xqwwd1ft1w6p58f1orvp2dni3b0y394.png)
On the right side, we'll simplify the cubic root where possible and power what's outside of the root:
![162x^cy^5=3^3x^6y^3 (6y^d)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8h90bv4dj1slf87x5wap1w7iix98ttpvyf.png)
Simplifying
![x^cy^5=x^6y^(3+d)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mjbl6566i5p73w9ycgl770mdj39y1o6u27.png)
Equating the powers of x and y separately we find
c=6
5=3+d
d=2
The values are
![\boxed{c=6,d=2}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/crxg1x18fcvc25k6oljlqthol4b7rn47s6.png)