19.8k views
2 votes
Determine whether each integral is convergent or divergent.

1- 1/(x-2)^3/2 dx, limits ( infinite to 3)

2- (1/3-4x)dx, limits (0 to -infinite)

3- e^(-5p) dx, limits ( infinite to 2)

4- (x^2/(sqrt(1+x^3)))dx , limits ( infinite to 0)

5- lnx/x dx , limits(infinite to 1)

6- 1/(x^2 +x)dx , limits (infinite to 1)

7- 3/x^5 dx ,limits (1 to 0)

8- dx/(x+2)^1/4 , limits (14 to -2)

9- 1/(x-1)^1/3 , limits (9 to 0)

10- e^x /((e^x) -1), limits (1 to -1)

11- z^2 lnz dz ,limits( 2 to 0)

12- s= x>= 1,0 <= y <=e^-x

2 Answers

7 votes

Answer:

Step-by-step explanation: 1) ∫ 1/( x - 2)∧3/2 dx, Limits ⇒ infinite to 3

∫( x - 2)∧-3/2 = -2/( x - 2)∧1/2 + c

Limit⇒ infinite to 3: -2/(3 - 2) = -2 ( convergent)

2) ∫1/( 3 - 4x) dx, Limits⇒ 0 to infinite

Let u = 3 - 4x

du = -4 dx

∴ dx = -1/4du

Hence, -1/4∫1/udu = - 1/4ln u + c = -1/4ln(3 - 4x) + c

Limits⇒ 0 to infinite: -1/4㏑(3 - 0) = -1/4 ㏒3 (convergent)

3) ∫e∧(-5x)dx, Limits⇒ infinite to 2

Let u = -5x

du = -5dx

∴ dx = -1/5du

-1/5∫e∧-u = -1/5e∧-5x + c

Limits⇒ infinite to 2: -1/5e∧-5(2) = -1/5e∧-10 (divergent)

4) ∫x²/√(1 + x³)dx, Limits⇒ infinite to 0

Let u = 1 + x³

du = 3x²dx

∴ dx = 1/3x²du

1/3x²∫x²/u∧1/2du = 1/3㏑u∧1/2 + c = 1/3㏑(√1 + x²) + c

Limits⇒infinite to 0: 1/3㏒0 = infinite (divergent)

5)

6)∫1/(x² + x)dx, Limits⇒ infinite to 1

㏑(x² + x) + c

Limits⇒ infinite to 1: ㏒(1 + 1) = ㏒ 2 (divergent)

7) ∫3/x∧5dx = ∫3x∧-5dx, Limits⇒ (1 to 0)

- 3/4x∧-4 + c

Limits ( 1 to 0): -3/4(1)∧-4 - (-3/4(0)) = -3/4 + 0 = -3/4 (convergent)

8)∫1/(x + 2)∧1/4 dx, Limits (14 to -2)

Let u = x + 2

du = dx

∫1/u∧1/4 du = ∫u∧-1/4

3/4u∧3/4 = 3(x + 2)∧3/4/4 + c

Limits (14 to -2): 3(14 + 2)∧3/4/4 - (3(-2 + 2)∧3/4/4) = 3(16)∧3/4/4 - 0

3(2)³/4 = 3 X 8/4 = 3 X 2 = 6 (convergent)

9) ∫1/(x - 1)∧1/3dx, Limits (9 to 0)

Let u = x - 1

du = dx

∫1/u∧1/3 du = ∫u∧-1/3du = 2u∧2/3/3 + c = 2(x - 1)∧2/3/3 + c

Limits (9 to 0): 2(9 -1)∧2/3/3 - 2(0 - 1)∧2/3/3 = 2(8)∧2/3 - 2(-1)∧2/3/3

2(2)²/3 - 2/3 = 8/3 - 2/3 = 6/3 = 2(convergent)

10) ∫e∧x/(e∧x - 1), Limits (1 to -1)

Let u = e∧x - 1

du = e∧x dx

∴ dx = 1/e∧x du

1/e∧x∫e∧x/u du

∫1/u = ㏑u du + c = ㏒(e∧x - 1) + c

Limits (1 to -1): ㏒(e - 1) - ㏒e∧-1 - 1

㏒(e - e∧-1) (divergent)

11) ∫z∧2㏑z dz, Limits (2 to 0) (divergent)

12) Diververgent

User Paw Baltzersen
by
5.9k points
2 votes

Answer:

Divergers

Explanation:

User Ohad Perry
by
5.5k points