Answer:
So the value of height that separates the bottom 20% of data from the top 80% is 594.74.
So the value of height that separates the bottom 80% of data from the top 20% is 645.26.
we will have the 60% of the weigths
Explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
Where
and
The z score formula is given by:
We want the 60% middle values so we need to have 20% of the values on each tail, and we want to find the limits so we can do this:
LOWER LIMIT
For this part we want to find a value a, such that we satisfy this condition:
(a)
(b)
Both conditions are equivalent on this case. We can use the z score again in order to find the value a.
As we can see on the figure attached the z value that satisfy the condition with 0.2 of the area on the left and 0.8 of the area on the right it's z=-0.842. On this case P(Z<-0.842)=0.2 and P(z>-0.842)=0.8
If we use condition (b) from previous we have this:
But we know which value of z satisfy the previous equation so then we can do this:
And if we solve for a we got
So the value of height that separates the bottom 20% of data from the top 80% is 594.74.
UPPER LIMIT
For this part we want to find a value a, such that we satisfy this condition:
(a)
(b)
Both conditions are equivalent on this case. We can use the z score again in order to find the value a.
As we can see on the figure attached the z value that satisfy the condition with 0.8 of the area on the left and 0.2 of the area on the right it's z=0.842. On this case P(Z<0.842)=0.8 and P(z>0.842)=0.2
If we use condition (b) from previous we have this:
But we know which value of z satisfy the previous equation so then we can do this:
And if we solve for a we got
So the value of height that separates the bottom 80% of data from the top 20% is 645.26.
So then the answer for this case would be:
we will have the 60% of the weigths