183k views
5 votes
Find the value of cos(a), if cos(a)^4 - sin(a)^4 = 1/8

User Llinvokerl
by
8.1k points

2 Answers

1 vote

Answer:

cosa = ±3/4

Explanation:

cos(a)^4 - sin(a)^4 = 1/8

(cos(a)² - sin(a)²)×(cos(a)²+ sin(a)²)= 1/8 ; {remember: cos(a)²+ sin(a)² = 1}

(cos(a)² - sin(a)²) = 1/8

cos(a)² - (1 - (cos(a)² = 1/8

2cos(a)² = 9/8

2cos(a)² = 9/16

cosa = ±3/4

User Handhand
by
8.0k points
4 votes

cos a = 3/4

Explanation:

Step 1: Given details are cos(a)^4 - sin(a)^4 = 1/8

Now, cos(a)^4 can also be written as (cos²a)² and sin(a)^4 can be written as (sin²a)²

⇒ (cos²a)² - (sin²a)² = 1/8

Step 2: Apply the formula for a² - b² = (a - b) (a + b). Here a = cos²a and b = sin²a

⇒ (cos²a)² - (sin²a)² = (cos²a - sin²a) (cos²a + sin²a) = 1/8

⇒ (cos²a - sin²a) = 1/8 since cos²a + sin²a = 1

⇒ cos²a - (1 - cos²a) = 1/8 since sin²a = 1 - cos²a

⇒ 2 cos²a - 1 = 1/8

⇒ 2 cos²a = 1 + 1/8 = 9/8

⇒ cos²a = 9/16

cos a = 3/4

User Roman Golenok
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories