171,086 views
26 votes
26 votes
A curve is banked at an angle of 29.1 degrees above the horizontal and the road surface has a coefficient of static friction of 0.4. What must the radius of curvature be for the safe minimum speed of 27.1 m/s?

A curve is banked at an angle of 29.1 degrees above the horizontal and the road surface-example-1
User Avinash Kumar Singh
by
2.6k points

1 Answer

17 votes
17 votes

Hi there!

We can begin by summing the forces acting on the car.

Along the axis of the incline, the forces of friction and gravity are working. The force of friction points towards the top of the ramp, while the force of gravity works towards the bottom.

We can use trigonometry to determine the force due to gravity along the ramp.


F_g = Mg sin\theta

The force due to friction is equal to:

F_f = \mu N

The normal force is the vertical component of the force due to gravity, so:

F_f = \mu Mgcos\theta

Now, the combination of these two forces produces a component of the centripetal force. Drawing a diagram, we see that the true centripetal force is the HYPOTENUSE, while these forces sum up to its horizontal component along the ramp.

Therefore:

F_c sin\theta = Mgsin\theta - \mu Mgcos\theta

The centripetal force is equivalent to:

F_c = (Mv^2)/(r)

m = mass (kg)

v = velocity (m/s)
r = radius (m)

Rewrite:

(Mv^2)/(r)sin\theta = Mgsin\theta - \mu Mgcos\theta

Cancel out 'M'.


(v^2)/(r)sin\theta = gsin\theta - \mu gcos\theta

Rearrange to solve for 'r'.


r = (v^2sin\theta)/(gsin\theta - \mu gcos\theta)

Plug in values and solve.

r = ((27.1^2)sin(29.1))/((9.8)sin(29.1) - 0.4(9.8)cos(29.1)) = \boxed{266.365 m}

User Hamze Torabzade
by
3.6k points