Answer:
|SQ|=5
Explanation:
If S is the median, then OP is a median of triangle OMN.
This implies that:
|MP|=|NP|
![3x-4=x+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r8x2k5tggrk6jyqh0715dag12e1ksdr46k.png)
We group like terms and solve for x.
![3x-x=4+4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4zr4ajyp8nn8uk7iy5d09w9ipqklp1tlvy.png)
![\implies 2x=8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wswyiwyahcc39p885qsm54nzvni25jtyls.png)
![\implies x=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x6v242io56nggtv3bc55udneqrjz98br6m.png)
Now we know that: MN:SQ=2:1
But MN=2x+2
This implies that:
2x+2:SQ=2:1
Put x=4
2(4)+2:SQ=2:1
10:SQ=2:1
Therefore |SQ|=5