Answer:
a) Selling price y= a + b (age x)
b)
a= 728.025
b= -38.217
c)
Selling price y = 728.025 - 38.217 age x
d)
SSE=8280.25
Explanation:
a)
The regression model can be written as
y=a+bx
Here y=selling price and x is age.
So, the regression model will be
Selling price y= a + b (age x)
b)
We have to find the values of "a" and "b"
sumx=5+10+12+14+15=56
sumy=500+400+300+200+100=1500
sumxy=5*500+10*400+12*300+14*200+15*100=14400
sumx²=5²+10²+12²+14²+15²=690
n=5
b=-12000/314
b=-38.217
ybar=a+bxbar
a=ybar-bxbar
ybar=sumy/n=1500/5=300
xbar=sumx/n=56/5=11.2
a=300-(-38.217)(11.2)
a=300+428.025
a=728.025
c)
Selling price y = a - b(age x)
Selling price y = 728.025 - 38.217 age x
d)
SSE known as sum of square of error can be calculated as
SSE=sum(y-yhat)²
y 500 400 300 200 100
x 5 10 12 14 15
yhat= 728.025 - 38.217 age x 536.940 345.855 269.421 192.987 154.770
y-yhat -36.940 54.145 30.579 7.013 -54.770
(y-yhat)² 1364.56 2931.68 935.08 49.18 2999.75
SSE=sum(y-yhat)²
SSE=1364.56 +2931.68 +935.08 +49.18 +2999.75
SSE =8280.25