Laura's age is 9 years.
Solution:
Let x be the age of April.
Laura's age = 2 years more than half of April's age
Convert statement into algebraic expression:
Half of April's age =
![(x)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ssksz1icixv0x3wc9jie13gl2q3gnrswxi.png)
2 years more than half of April's age =
![(x)/(2)+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rzkzdv2vwyn0omicblvpaqrj7vfk9z9m5p.png)
Combined age of April and Laura = 23
⇒ April's age + Laura's age = 23
![$\Rightarrow \ \ x+((x)/(2)+2) =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z71n2laye8k82zosuoapqmg3lp6zc39afa.png)
![$\Rightarrow \ \ x+(x)/(2)+2 =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wmvvmrfj7yfso3g6tg5kgx7aaguqm9lly9.png)
![$\Rightarrow \ \ (x)/(1)+(x)/(2)+(2)/(1) =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/437kasn8x37t1b5px1kczfrv7x2csl3zki.png)
To add the fractions make the denominators same.
Multiplying 2 on both numerator and denominator of unlike terms, we get
![$\Rightarrow \ \ (x*2)/(1*2)+(x)/(2)+(2*2)/(1*2) =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xfm8jxqkcpdic9fg123178qflpz19flis0.png)
![$\Rightarrow \ \ (2x)/(2)+(x)/(2)+(4)/(2) =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9q3nwhmt4apxdgoljkp1sdkstsd9sa0r62.png)
Denominators are same, now add the fractions.
![$\Rightarrow \ \ (2x+x+4)/(2) =23](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sieipgcgdpwgacoczhheidh1g7a2ohegy7.png)
Do cross multiplication.
![$\Rightarrow \ \ 2x+x+4=23*2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2rjdyznnhwbivc8cunbix1g2hw5s047yns.png)
![$\Rightarrow \ \ 3x=46-4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dje1pt35y6q71wum4pnbfp0ziv3noosmpc.png)
![$\Rightarrow \ \ 3x=42](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pxvewh05x9o2ac8ntnd7ubfsdn6rzraeqb.png)
![$\Rightarrow \ \ x=14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/doo9y5alu0v0ah0yahvybdt8v0o45rrzjy.png)
Aprils's age = 14 years
Laura's age =
![(14)/(2)+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/glknt2sk9a9lfdarbsac80io52jpuvmops.png)
= 7 + 2
Laura's age = 9
Hence Laura's age is 9 years.