Answer:
The potential across the capacitor is 1.39 V.
Step-by-step explanation:
Given that,
Voltage = 15 V
First capacitance = 4.3μF
Second capacitance = 12.6μF
Third capacitance = 31.2 μF
We need to calculate the equivalent capacitance
Using formula of capacitance for series
![(1)/(C)=(1)/(C_(1))+(1)/(C_(2))+(1)/(C_(3))](https://img.qammunity.org/2021/formulas/physics/college/c7dce9y8o14k8g7msa2q39sdizjrz7by19.png)
Put the value into the formula
![(1)/(C)=(1)/(4.3)+(1)/(12.6)+(1)/(31.2)](https://img.qammunity.org/2021/formulas/physics/college/iq2pibxbdrbgxwi0hq3c3tatoaa7f2470r.png)
![(1)/(C)=(48455)/(140868)](https://img.qammunity.org/2021/formulas/physics/college/htdk4479wwstkpslw8jymufnudrdfxzizh.png)
![C=2.907\ \mu F](https://img.qammunity.org/2021/formulas/physics/college/x4pezn3vyijsueywkse8mblr6pshplfg1b.png)
We need to calculate the charge
Using formula of charge
![q=CV](https://img.qammunity.org/2021/formulas/physics/college/n2go2thwtxct4ewlzq8ojrhkp385aguw7e.png)
Put the value into the formula
![q=2.907*15](https://img.qammunity.org/2021/formulas/physics/college/ez6kgmmklwuktyyxg6r4iblzwqm26rriya.png)
![q=43.605\ \mu C](https://img.qammunity.org/2021/formulas/physics/college/ocv62doca7ymaws9fzzynozk1n44a2cb7r.png)
We need to calculate the potential difference
Using formula of potential difference
![\Delta V=(q)/(C)](https://img.qammunity.org/2021/formulas/physics/college/pox5d03whr8drdryldxq0ann0dxb2q5uw6.png)
Put the value into the formula
![\Delta V=(43.605)/(31.2)](https://img.qammunity.org/2021/formulas/physics/college/zp4cf0zndq0341z5bwc3c0sa8bqd4yabr8.png)
![\Delta V=1.39\ V](https://img.qammunity.org/2021/formulas/physics/college/zs7pjxn2autgqlh3hmen5w1lbxtxpomt1a.png)
Hence, The potential across the capacitor is 1.39 V.