Answer:
a) x = 20 - 4.0962*t , y = 2.8673*t
b) S = sqrt (25t^2 -163.848t + 400)
c) t = 0.50 s , t = 6.05 s
Explanation:
Coordinate system:
Statue position = (0,0)
Initial position (A) = ( 20 , 0 )
Final position (B) = ( 0 , 14 )
Speed = 5 ft /s
Step 1: Find the velocity vector
Vector (AB) = (0 - 20 ) i + (14 - 0) j = -20 i + 14 j
mag (AB) = sqrt ( 20^2 + 14^2 ) = 2 sqrt(149)
unit vector (AB) = (-10 / sqrt(149) ) i + ( 7 / sqrt(149) ) j
Velocity (AB) = 5*(-10 / sqrt(149) ) i + 5*( 7 / sqrt(149) ) j
Velocity (AB) = (-50 / sqrt(149) ) i + ( 35 / sqrt(149) ) j
Step 2: Find parametric equation for both x and t
x = x(0) + V_ab . i*t
x = 20 - 50 / sqrt(149) * t
y = y(0) + V_ab . j*t
y = 35 / sqrt(149) * t
Hence,
x = 20 - 4.0962*t
y = 2.8673*t
part b
S = sqrt ( x^2 + y^2 )
S = sqrt ( (20 - 4.0962*t)^2 + (2.8673*t)^2 )
S = sqrt (25t^2 -163.848t + 400)
part c
S = 18 ft
sqrt (25t^2 -163.848t + 400) = 18
25t^2 -163.848t + 76 = 0
Solve for t:
t = 0.50 s
t = 6.05 s