Answer:
A. T = 0.4358s and f = 2.29hz
B. A = 15.67m
C. amax = 3258.71m/s
D. amax = 22601J
E. Ek = 3616.16J
Step-by-step explanation:
A. The period of the motion, T = 2pi*(sqrt(m/k))
Where m is the mass of the body in motion = 885g = 0.885kg
k = the spring constant = 184N/m2
T = 2pi*(sqrt(0.885/184))
= 0.4358s
Frequency of the motion, f = 1/T
T = 0.4358s
f = 2.2949hz
B. Maximum speed, Vmax = A*(sqrt(k/m))
Where A = amplitude of the motion
Making amplitude subject of formula,
A = Vmax(sqrt(m/k))
= 226*(sqrt(0.885/184))
= 15.6739m
C. Maximum acceleration, amax = A*(k/m)
= 15.6739*(184/0.885)
= 3258.71m/s
D. Total energy, Etotal = 1/2*(m * Vmax)2
= 1/2 * 0.885 * (226)2
= 22601J
E. Kinetic energy, Ek = Etotal - mechanical energy
Ek = 1/2*(k*A2) - 1/2*(k*x2)
Where x = 0.40A
Ek = 1/2*((k*A2) - (k*0.40A)2)
= 1/2*k*A2*(1 - 0.16)
= 1/2*k*A2*0.16
But 1/2*k*A2 = 22601J
Therefore, Ek = 22601*0.16
= 3616.16J