Answer
given,
torque produced, τ = 22 N.m
Radius of the wheel. r = 10 cm
Moment of inertial = 2 kg.m²
initial angular speed = 0 rad/s
time, t = 5 s
a) we know,
τ = I α
22 = 2 x α
α = 11 rad/s²
using equation of rotation motion
![\theta = \omega_o t + (1)/(2)\alpha t^2](https://img.qammunity.org/2021/formulas/physics/college/4wa2u3ht8c2jks3bfk2u5vpecwjiqk95ys.png)
![\theta =(1)/(2)* 11 * 5^2](https://img.qammunity.org/2021/formulas/physics/college/m2ncpaekx6mjpwrfxak92s1upq9k8qu9eh.png)
θ = 137.5 rad
θ = 137.5/2π = 22 revolution.
b) angular velocity of the motor
![\omega_f = 55\ rad/s](https://img.qammunity.org/2021/formulas/physics/college/ayszwrtom6ou8ztjuwnuwiycrkd840jhpr.png)
c) acceleration of a point on the rim of the wheel
radial acceleration
![a_r = \omega^2 r](https://img.qammunity.org/2021/formulas/physics/college/r2gvoej90tqjxnefpaggqnm2mnm0bdv3c3.png)
![a_r = 55^2* 0.1](https://img.qammunity.org/2021/formulas/physics/college/h27m33dgid4cjsgr13una5d5fu9o4byy4i.png)
![a_r =302.5 \ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/u8zjzqjgi6irfjgewx6vfq3h6fx9mwcnrz.png)
tangential acceleration of the point on the rim
![a_t = \alpha r](https://img.qammunity.org/2021/formulas/physics/college/kidgkc7gxqsfrwm57mi9h0m36p9y1uevc8.png)
![a_t = 11* 0.1](https://img.qammunity.org/2021/formulas/physics/college/hay3zqxj699rvn6xishtsr5mkg8g5cso4z.png)
![a_t = 1.1\ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/yesv3m2pc8u21kxuwcmow96e38idqmo2fj.png)
now, acceleration of the point
![a = √(a_r^2+a_t^2)](https://img.qammunity.org/2021/formulas/physics/college/9xgxipsatqije6dporaqfy4nzhmbyvzd2r.png)
![a = √(302.5^2+1.1^2)](https://img.qammunity.org/2021/formulas/physics/college/kv8jhgb4y3g8200a5hnbgjhcvmqnoajl80.png)
![a = 302.5\ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/goc68gb9rbhzk1l8ptcmdfm0398b68e90u.png)