Answer:
The Proof for "Equal chord of a circle subtends equal angle at the Center".
Explanation:
Consider a Circle with center as C,
Radius AC ,BC ,DC and EC
Chord AB = Chord CD
To Prove:
"Equal chord of a circle subtends equal angle at center".
i.e ∠ACB = ∠ECD
Proof:
In Δ ABC and Δ DEC
Chord AB ≅ Chord DE .….{Given}
AC ≅ DC …..{Radius of Same Circle}
BC ≅ EC ….{Radius of Same Circle}
Δ ABC ≅ Δ DEC ….{By Side-Side-Side Congruence Postulate}
∴∠ACB ≅ ∠ECD ...{Corresponding Parts of Congruent Triangles are Congruent or CPCTC} ....Proved
i.e Equal chord of a circle subtends equal angle at the Center.