Quotient = 2
Solution:
Given expression is
.
To find the quotient.
![22x^2y^2/11x^2y^2=(22x^2y^2)/(11x^2y^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2cf64mmv1tx86bgk556ric0qwux1w5s9aq.png)
In numerator 22 can be written as 2 × 11.
![(22x^2y^2)/(11x^2y^2)=(2*11x^2y^2)/(11x^2y^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eyty4kv14clgegasrmgqd0g4ogqdxh6zk6.png)
Take common term out in the numerator and denominator.
![(22x^2y^2)/(11x^2y^2)=((11x^2y^2)(2))/(11x^2y^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zeqkdz23eq322zlhzuk8h95n6v5j0w0d1v.png)
Common terms in the numerator and denominator will be cancelled.
![(22x^2y^2)/(11x^2y^2)=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l7rquk1e9356akip7v4kg9dq2ty3zxswq0.png)
Hence the quotient is 2.