Option A: 11.8%
Explanation:
The total number of question n=10
The probability of getting true is
![p=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nwe3g993ma8u33sqep6o9m11ddp7b7alhq.png)
The probability of getting false is
![q=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zo17thiiezmfjjbndds90qv9ig5ufw1s4f.png)
It is given that the student gets 7 out of 10 questions right, the,
![x=7](https://img.qammunity.org/2021/formulas/mathematics/high-school/2bnkqxj7yd0fo7vi8japxxe1irbgu1f8vb.png)
Using binomial distribution formula,
![P(x)=\left[(n !)/(x !(n-x) !)\right] p^(x) q^(n-x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y40rcry0pf8shu84x8bqhgwkg9leulo9ra.png)
Substituting the values, we get,
![\begin{aligned}P(7) &=\left[(10 !)/(7 !(10-7) !)\right]\left((1)/(2)\right)^(7)\left((1)/(2)\right)^(3) \\&=\left[(10 !)/(7 ! 3 !)\right]\left((1)/(2)\right)^(7+3)\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xlztg2gpypo57ef4so4h2713ppwvtwr7e5.png)
Solving, we get,
![P(7)=(15)/(128)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tvwv9kakiv4gb0gpmodbpuhncz8wwu2v35.png)
![P(7)=0.118](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1v9hdglj6ffemjinv5fcpgslzag1g9w6is.png)
To find the probability, multiply it by 100, we get,
%
Thus, the correct answer is 11.8%