Answer:
ΔEFG is an isosceles triangle.
Explanation:
Given:
E (0, 0),
F (−7, 4),
G (0, 8)
ΔEFG
Solution:
Distance formula
Distance d =
![\sqrt{(x_2-x_1)^2 +( y_2-y_1)^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lowuum742huwd18j224o96onb2iv5p2q2r.png)
Step 1: Finding the length of EF
By using distance formula,
![EF = √((-7 - 0)^2 + (4-0)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sacop2kmrwoyagl25htpamh9m2l64q630f.png)
![EF = √((49) + (16))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b493tz5xjnxnpz85v21xftvclh5t4udww1.png)
![EF = √((49) + (16))\\EF = √(65)\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/94jktjbgmu3icshkn22vto31nuimi1gjei.png)
Step 2: Finding the length of FG
By using distance formula,
![FG = √((0-(-7))^2+(8-4)^2)\\FG = √((7)^2 +(4)^2)\\FG = √(49 +16)\\FG = √(65)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f5gc48eqqitdso4q0cpyrlrqh6dpjub357.png)
Step 2: Finding the length of GE
![GE= √((0-0)^2 + (0-8)^2)\\\\GE =√((-8)^2)\\GE = √(64)\\GE = 8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j6o8wta49c9sc8xupa1k57jgzkw5sv61ev.png)
Thus we could see that the sides EF = FG
So it is a isosceles triangle.