Answer:
The correct option is C. 3
Therefore the value of x in the solution set of
![8x-6 > 12+2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4r3gnooa6r64ulyvbxx4d4ymn32n7n4q75.png)
is
![x>3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3xbhcua6r10nwy81fmz8508jx7phs8ifql.png)
Explanation:
Given:
![8x-6 > 12+2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4r3gnooa6r64ulyvbxx4d4ymn32n7n4q75.png)
To Find:
x = ?
Solution:
.......Given:
Step 1 : Add '6' on Both the side we get
![8x-6+6 > 12+2x+6\\8x > 18+2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q384qxega73bd1k3gt1in69bxn00k5dqgf.png)
Step 2 : Subtract '2x' from Both the side we get
![8x-2x > 18+2x-2x\\6x > 18](https://img.qammunity.org/2021/formulas/mathematics/middle-school/19m4iw9q4yumnazzgxo2mc6jo0lpedjo87.png)
Step 3 : Dividing by '6 on Both the side we get
![(6x)/(6) >(18)/(6)\\\\x > 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jgam1t9ocwshyrp1p3aokvsq6vtgtkj8qq.png)
Therefore the value of x in the solution set of
![8x-6 > 12+2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4r3gnooa6r64ulyvbxx4d4ymn32n7n4q75.png)
is
![x>3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3xbhcua6r10nwy81fmz8508jx7phs8ifql.png)