124k views
2 votes
Use the fundamental identities and appropriate algebraic operations to simplify the following expression. (18 +tan x) (18-tan x)+ sec 2x Complete the following statement The lowest point on the graph of y = cos x, 0sxs2x, occurs when x-

1 Answer

3 votes

Answer:

a)
\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)=325

b) The lowest point of
y=\cos \left(x\right),
0\leq x\leq 2\pi is when x =
\pi

Explanation:

a) To simplify the expression
\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right) you must:

Apply Difference of Two Squares Formula:
\left(a+b\right)\left(a-b\right)=a^2-b^2


a=18,\:b=\tan \left(x\right)


\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)=18^2-\tan ^2\left(x\right)=324-\tan ^2\left(x\right)


324-\tan ^2\left(x\right)+\sec ^2\left(x\right)

Apply the Pythagorean Identity
1+\tan ^2\left(x\right)=\sec ^2\left(x\right)

From the Pythagorean Identity, we know that
1=-\tan ^2\left(x\right)+\sec ^2\left(x\right)

Therefore,


324[-\tan ^2\left(x\right)+\sec ^2\left(x\right))]\\324[+1]\\325

b) According with the below graph, the lowest point of
y=\cos \left(x\right),
0\leq x\leq 2\pi is when x =
\pi

Use the fundamental identities and appropriate algebraic operations to simplify the-example-1
User Eduardo Chavira
by
4.4k points