Answer: The equation of the sphere with the center and radius
![x^(2) +y^(2) +z^(2)-6 x+18 y-6 z+74=0](https://img.qammunity.org/2021/formulas/mathematics/college/phenwestvlkmy1nhrrg87a510hynd2ehj8.png)
b) The intersection of this sphere with the y z-plane the x- co-ordinate
is zero(i.e., x = 0 )
Explanation:
a) The equation of the sphere having center (h,k,l) and radius r is
![(x-h)^(2) +(y-k)^2+(z-l)^2 = r^2](https://img.qammunity.org/2021/formulas/mathematics/college/cnu4ikdwo5cmytzkq0b714kghzxoee08bj.png)
Given center of the sphere (3, -9, 3) and radius 5
![(x-3)^(2)+(y+9)^2+(z-3)^2 = 5^2](https://img.qammunity.org/2021/formulas/mathematics/college/o1vzqljmiqvqccqqe9dyrjgom4kfd4lojw.png)
on simplification , we get solution
![x^(2) -6 x+9+y^(2) +18 y+81+z^(2)-6 z+9=25](https://img.qammunity.org/2021/formulas/mathematics/college/ttzn9l24n87s0gbmj7hj7gh099m5y2iwn5.png)
![x^(2) +y^(2) +z^(2)-6 x+18 y-6 z+74=0](https://img.qammunity.org/2021/formulas/mathematics/college/phenwestvlkmy1nhrrg87a510hynd2ehj8.png)
Final answer :-
![x^(2) +y^(2) +z^(2)-6 x+18 y-6 z+74=0](https://img.qammunity.org/2021/formulas/mathematics/college/phenwestvlkmy1nhrrg87a510hynd2ehj8.png)
b) The intersection of this sphere with the y z-plane the x- co-ordinate
is zero(i.e., x = 0 )
![y^(2) +z^(2)+18 y-6 z+74=0](https://img.qammunity.org/2021/formulas/mathematics/college/ewsfelpz3pio113o8p05tln0w5jcblaiy6.png)