59.2k views
3 votes
A parabola $ax^2 bx c$ contains the points $(-1,0)$, $(0,5)$, and $(5,0)$. Find the value $100a 10b c$.

User Cevin
by
3.4k points

1 Answer

12 votes

Answer:


100a+10b+c=-55

Explanation:

Solve for c for each coordinate point:


f(x)=ax^2+bx+c


0=ax^2+bx+c


0=a(-1)^2+b(-1)+c


0=a-b+c


-c=a-b


c=b-a


f(x)=ax^2+bx+c


5=a(0)^2+b(0)+c


5=c


f(x)=ax^2+bx+c


0=a(5)^2+b(5)+c


0=25a+5b+c


-c=25a+5b


c=-25a-5b

Combine first and third equations to solve for b:


b-a=-25a-5b


6b-a=-25a


6b=-24a


b=-4a

Substitute values of b=-4a and c=5 to solve for a:


c=b-a


5=-4a-a


5=-5a


-1=a

Find b:


c=b-a


5=b-(-1)


5=b+1


4=b

Evaluate required expression:


100a+10b+c


100(-1)+10(4)+5


-100+40+5


-60+5


-55

Therefore,
100a+10b+c=-55

User Missimer
by
3.3k points