8.4k views
1 vote
Simplify the expression and rewrite in rational exponent form.

Simplify the expression and rewrite in rational exponent form.-example-1
User Ynh
by
5.0k points

1 Answer

5 votes

Answer:


4 x^{(11)/(10)} \cdot y^{(17)/(3)}

Explanation:

The given expression:
4 \sqrt[5]{x^(3)} \cdot y^(4) \cdot √(x) \cdot \sqrt[3]{y^(5)}

Step 1: Change radical to fractional exponent.

Formula for fractional exponent:
\sqrt[n]{a}=a^{(1)/(n)}

The power to which the base is raised becomes the numerator and the root becomes the denominator.


\Rightarrow 4 x^{(3)/(5)} \cdot y^(4) \cdot x^{(1)/(2)} \cdot y^{(5)/(3)}

Step 2: Apply law of exponent for a product
a^(m) * a^(n)=a^(m+n)

Multiply powers with same base.


\Rightarrow 4 x^{(3)/(5)+(1)/(2)} \cdot y^{4+(5)/(8)}

Take LCM for the fractions in the power.


\Rightarrow 4 x^{(6)/(10)+(5)/(10)} \cdot y^{(12)/(3)+(5)/(3)}


\Rightarrow 4 x^{(11)/(10)} \cdot y^{(17)/(3)}

Hence the simplified form of
4 \sqrt[5]{x^(3)} \cdot y^(4) \cdot √(x) \cdot \sqrt[3]{y^(5)} \text { is } 4 x^{(11)/(10)} \cdot y^{(17)/(3)}.

User Poyraz
by
5.4k points