Answer:
![4 x^{(11)/(10)} \cdot y^{(17)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42r3nq5nxaagvfrp0ilztv0uph2geuvxaf.png)
Explanation:
The given expression:
![4 \sqrt[5]{x^(3)} \cdot y^(4) \cdot √(x) \cdot \sqrt[3]{y^(5)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a93glyvrck4r4mu4sbpe2x62mh10mtob73.png)
Step 1: Change radical to fractional exponent.
Formula for fractional exponent:
![\sqrt[n]{a}=a^{(1)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9yxc17yxv4j6wrlds6pogdbbsgooqj7u9d.png)
The power to which the base is raised becomes the numerator and the root becomes the denominator.
Step 2: Apply law of exponent for a product
Multiply powers with same base.
Take LCM for the fractions in the power.
![\Rightarrow 4 x^{(11)/(10)} \cdot y^{(17)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o88kmvmy4uy618ia5oj5831frgjr1agffc.png)
Hence the simplified form of
.