Answer:
a.
![0.42465\approx 42.5\%](https://img.qammunity.org/2021/formulas/mathematics/college/ty2e2z44chtz0daj722fn6vgrvlvpyxif0.png)
b. 0.23
Explanation:
We have been given that the the distribution from which the Yi's were drawn is normal with a mean of 100 and a standard deviation of 16.
(a) We are asked to find the probability that any arbitrary Yi will exceed 103.
Let us calculate z-score corresponding to 103 using z-score formula.
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/high-school/24k01r9qa0a6ibv4tds8q1jpbjh932http.png)
![z=(103-100)/(16)](https://img.qammunity.org/2021/formulas/mathematics/college/waol5lgarto59j5lo9vj9jggh9zim9i4m3.png)
![z=(3)/(16)](https://img.qammunity.org/2021/formulas/mathematics/college/f10jmly3g0pt1cdrc7dp0um1y3wy2w3wzo.png)
![z=0.1875](https://img.qammunity.org/2021/formulas/mathematics/college/cupypfhhul6tw1aduihtmrsmv1y5cog2ya.png)
![z\approx 0.19](https://img.qammunity.org/2021/formulas/mathematics/college/xcdkkqg4xots2wmyh25s04liis2lwl3lbn.png)
Now, we need to find
.
![P(z>0.19)=1-)(z<0.19)](https://img.qammunity.org/2021/formulas/mathematics/college/qq403sh4n8ag7y4b2g3yucmeislg0bk518.png)
Using normal distribution table, we will get:
![P(z>0.19)=1-0.57535](https://img.qammunity.org/2021/formulas/mathematics/college/blhxk0au60d5nwi4dhf1zmzvx8mhacq2ey.png)
![P(z>0.19)=0.42465](https://img.qammunity.org/2021/formulas/mathematics/college/kbt7egc9ghvx38kp9luk5zj9q4va02nt29.png)
Therefore, the probability, that any arbitrary Yi will exceed 103, is 0.42465 or 42.5%.
(b) To find the probability that exactly 3 of the Yi's will exceed 103, we will use binomial probability formula.
![_nC_r\cdot P^r\cdot (1-P)^(n-r)](https://img.qammunity.org/2021/formulas/mathematics/college/1nf9v5ls694m83uv2g84d2f6hxika3s0mo.png)
For the given scenario
,
and
.
![(9!)/(3!(9-3)!)\cdot (0.42465)^(3)\cdot (1-0.42465)^(9-3)](https://img.qammunity.org/2021/formulas/mathematics/college/8jktdh1wpn56t43ycuqp38adp68pvieufr.png)
![(9*8*7*6!)/(3*2*6!)\cdot (0.42465)^(3)\cdot (0.57535)^(6)](https://img.qammunity.org/2021/formulas/mathematics/college/razygdurbh7gom6z4ox26o1h37q8p7wsl5.png)
Therefore, the probability, that exactly 3 of the Yi's will exceed 103, is approximately 0.23 or 23%.