185k views
2 votes
PLEASE HELP OR I FAIL IB MATH PLEASE in the expansion (3x-2)^12 the term in x^5 can be expressed as (12 choose r)*(3x)^p*(-2)^q

1 Answer

6 votes

Answer:


C^(12)_7(3x)^5(-2)^7

Explanation:

Use binomial expansion formula:


(a+b)^n=\sum \limits _(k=0)^nC^n_ka^(n-k)b^(k)

Then


(3x-2)^(12)=\sum \limits_(k=0)^(12)C_k^(12)(3x)^(12-k)(-2)^k

In the expansion
(3x-2)^(12), the term in
x^5 is determined for


12-k=5\\ \\-k=5-12\\ \\-k=-7\\ \\k=7,

then the coefficient at
x^5 is


C^(12)_7(3x)^(12-7)(-2)^7=C^(12)_7(3x)^5(-2)^7

User Pedro Marcelino
by
4.2k points