394,950 views
12 votes
12 votes
5x + 14y - 2z = -36 7x + 3y + 4z = 22 3x - 2y - Z= 9​

User Susjoh
by
2.8k points

1 Answer

29 votes
29 votes

Answer:


=(774)/(337),\:z=(1225)/(337),\:y=-(968)/(337)

Explanation:

Given:


\begin{bmatrix}5x+14y-2z=-36\\ 7x+3y+4z=22\\ 3x-2y-z=9\end{bmatrix}

Solve:


\mathrm{Substitute\:}x=(-36-14y+2z)/(5)

Thus,


\begin{bmatrix}7\cdot (-36-14y+2z)/(5)+3y+4z=22\\ 3\cdot (-36-14y+2z)/(5)-2y-z=9\end{bmatrix}

Simplify


\begin{bmatrix}(-83y+34z-252)/(5)=22\\ (-52y+z-108)/(5)=9\end{bmatrix}


\mathrm{Substitute\:}y=-(-34z+362)/(83)


\begin{bmatrix}(-52\left(-(-34z+362)/(83)\right)+z-108)/(5)=9\end{bmatrix}

Simplify


\begin{bmatrix}(-337z+1972)/(83)=9\end{bmatrix}


\mathrm{For\:}y=-(-34z+362)/(83)


\mathrm{Substitute\:}z=(1225)/(337)


y=-(-34\cdot (1225)/(337)+362)/(83)


y=-(968)/(337)


\mathrm{For\:}x=(-36-14y+2z)/(5)


\mathrm{Substitute\:}z=(1225)/(337),\:y=-(968)/(337)


x=(-36-14\left(-(968)/(337)\right)+2\cdot (1225)/(337))/(5)


x=(774)/(337)

Therefore, the solutions are:


=(774)/(337),\:z=(1225)/(337),\:y=-(968)/(337)

~lenvy~

User NEOJPK
by
2.5k points