Tables 1, 3, and 5 satisfy the linear function y = 2x - 6, as their corresponding values for x and y match the equation.
To determine which tables give sets of values that satisfy the linear function y = 2x - 6, we need to substitute the given x-values into the function and see if the corresponding y-values match the results.
1.) x: 4, 6
y: 2, 7
When x = 4, y = 2(4) - 6 = 8 - 6 = 2 (matches)
When x = 6, y = 2(6) - 6 = 12 - 6 = 6 (matches)
2.) x: 5, 6
y: 4, 4
When x = 5, y = 2(5) - 6 = 10 - 6 = 4 (matches)
When x = 6, y = 2(6) - 6 = 12 - 6 = 6 (doesn't match)
3.) x: 5, 6
y: 4, 6
When x = 5, y = 2(5) - 6 = 10 - 6 = 4 (matches)
When x = 6, y = 2(6) - 6 = 12 - 6 = 6 (matches)
4.) x: 4, 7
y: 3, 8
When x = 4, y = 2(4) - 6 = 8 - 6 = 2 (doesn't match)
When x = 7, y = 2(7) - 6 = 14 - 6 = 8 (matches)
5.) x: 4, 7
y: 2, 8
When x = 4, y = 2(4) - 6 = 8 - 6 = 2 (matches)
When x = 7, y = 2(7) - 6 = 14 - 6 = 8 (matches)
So, the tables that give sets of values satisfying the linear function y = 2x - 6 are tables 1, 3, and 5.
Question: Select all the correct answers. Which tables give sets of values that satisfy the linear function y = 2x - 6?
Tables:
1.) x: 4, 6
y: 2, 7
2.) x: 5, 6
y: 4, 4
3.) x: 5, 6
y: 4, 6
4.) x: 4, 7
y: 3, 8
5.) x: 4, 7
y: 2, 8