Answer:
Length = 50 units
width = 35 units
Explanation:
Let A, B, C and D be the corner of the pools.
Given:
The points of the corners are.
![A(x_(1), y_(1)})=(-20, 25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v2figyraf99tfi5iyev67xv9b9uwfcz24i.png)
![B(x_(2), y_(2)})=(30, 25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/njfh7kmkjvlsj6uvsv768h0zvh2m1461s9.png)
![C(x_(3), y_(3)})=(30, -10)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kuhfi30hjdf2db9q2m4bz50nkyz85o4r50.png)
![D(x_(4), y_(4)})=(-20, -10)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2ojs67ail20503h3pz0narcx7hujy1ui7m.png)
We need to find the dimension of the pools.
Solution:
Using distance formula of the two points.
----------(1)
For point AB
Substitute points A(30, 25) and B(30, 25) in above equation.
![AB=\sqrt{(30-(-20))^(2)+(25-25)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k5n5xop96oxvoa5gqg2g3nl1orljosowsf.png)
![AB=\sqrt{(30+20)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iimshdv21jpspbxtrk8i5s2irr2uwsi3of.png)
![AB=\sqrt{(50)^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o11iw1zzntrtfq8cffc3zjdpy6e7ojbivz.png)
AB = 50 units
Similarly for point BC
Substitute points B(-20, 25) and C(30, -10) in equation 1.
![d(B,C)=\sqrt{(x_(3)-x_(2))^(2)+(y_(3)-y_(2))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u42c6s3yiiolutx0xyl9u48004umljc0ag.png)
![BC=\sqrt{(30-30)^(2)+((-10)-25)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7le8b7bfv3410s0h5p15d5ryabpblfdrhx.png)
![BC=\sqrt{(-35)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3yszwssxe2gtkgys0mz9fesqvskxxx397h.png)
BC = 35 units
Similarly for point DC
Substitute points D(-20, -10) and C(30, -10) in equation 1.
![d(D,C)=\sqrt{(x_(3)-x_(4))^(2)+(y_(3)-y_(4))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n070u704u3rfmxj2ff6hxaawl8ira71o2d.png)
![DC=\sqrt{(30-(-20))^(2)+(-10-(-10))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/eq434g77lytd9b14zksj8rcphxn1k4w7zh.png)
![DC=\sqrt{(30+20)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/91fhnrj0a102wzbb69vhxpytrs0t6wq5qm.png)
![DC=\sqrt{(50)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rlrftg2h6c8erqgekaujuqf73jiamkfroc.png)
DC = 50 units
Similarly for segment AD
Substitute points A(-20, 25) and D(-20, -10) in equation 1.
![d(A,D)=\sqrt{(x_(4)-x_(1))^(2)+(y_(4)-y_(1))^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gohi54syuz87r7lixhrsjohhpjy32goa3z.png)
![AD=\sqrt{(-20-(-20))^(2)+(-10-25)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a8svp5qytasy8hip5w5cgj9a98twa30tr5.png)
![AD=\sqrt{(-20+20)^(2)+(-35)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/djwskv13udrp7e4ve1i3kkavol5h8j0ogi.png)
![AD=\sqrt{(-35)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vdzuhvx6ko1nn9o9o41z8c76rcciu6mynw.png)
AD = 35 units
Therefore, the dimension of the rectangular swimming pool are.
Length = 50 units
width = 35 units