Answer:
.
Explanation:
We have been given the indefinite integral
. We are asked to find the integral using integration by parts.
We will use Integration by parts formula to solve our given problem.
Let
and
.
Now, we need to find du and v using these values as shown below:
![(du)/(dx)=(d)/(dx)(1-x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/vxpsyvqn3fy95fpjt93net8f6rbm2r9nac.png)
![(du)/(dx)=-2x](https://img.qammunity.org/2021/formulas/mathematics/college/j88p8bv2jwmmfoqs27r7btp9xn5lqaz2us.png)
![du=-2xdx](https://img.qammunity.org/2021/formulas/mathematics/college/v1prqvwz3iexxuznjjh0il4ay2mv5tcrg4.png)
![v'=e^(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/tjvfgxnajmvcvcchfutcye0xswba2n62yj.png)
![v=(1)/(2)e^(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/cc9e83nmksqugut0swey5uisdmx3skenwr.png)
Upon substituting these values in integration by parts formula, we will get:
![\int _1^2\:\left(1-x^2\right)e^(2x)\:dx=(1-x^2)((e^(2x))/(2))-\int _1^2((e^(2x))/(2))(-2x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/yfyqohzafs6i9o639dbby428btiako6238.png)
![\int _1^2\:\left(1-x^2\right)e^(2x)\:dx=(1-x^2)((e^(2x))/(2))-\int _1^2 -xe^(2x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/q3fcmkuzgi4rih503oo08vmvwf2sf02pen.png)
![\int _1^2\:\left(1-x^2\right)e^(2x)\:dx=(1-x^2)((e^(2x))/(2))+(1)/(4)(e^(2x)(2x)-e^(2x))](https://img.qammunity.org/2021/formulas/mathematics/college/tz6dtxq4b0bjkhllxueecci2s8nft85ry7.png)
Let us compute the boundaries.
![(1-2^2)((e^(2*2))/(2))+(1)/(4)(e^(2*2)(2*2)-e^(2*2))=-(3e^4)/(4)=-40.94861](https://img.qammunity.org/2021/formulas/mathematics/college/aw4x6kfbhdh7jd6d6v26o0iobiw9d93pxq.png)
![(1-1^2)((e^(2*1))/(2))+(1)/(4)(e^(2*1)(2*1)-e^(2*1))=(e^2)/(4)=1.84726](https://img.qammunity.org/2021/formulas/mathematics/college/fzsfqqm6brrzxe2u5xmfjeka4l2moeyujv.png)
![-40.94861-1.84726=-42.79587](https://img.qammunity.org/2021/formulas/mathematics/college/f07qsvwxjz6gu815bxz61ftb93f2dkz8tv.png)
Therefore, the value pf the given definite integral would be
.