Answer:
![\text{ln}(5x)(4x^2+10x)-2x^(2)-10x+C](https://img.qammunity.org/2021/formulas/mathematics/college/teu8fvho19937lfa55h95kxplrtgd3esok.png)
Explanation:
We have been given an definite integral
. We are asked to find the integral using integration by parts.
We will use Integration by parts formula to solve our given problem.
![\int\ vdv=uv-\int\ vdu](https://img.qammunity.org/2021/formulas/mathematics/college/xw6mw22btj15ocemdo4jzftapedpfar8cy.png)
Let
and
.
Now, we need to find du and v using these values as shown below:
Using chain rule, we will get:
![v'=8x+10](https://img.qammunity.org/2021/formulas/mathematics/college/9yu2qo8pwr98gdupqmmcrazw8rfx3c7294.png)
![v=(8x^(1+1))/(2)+10x](https://img.qammunity.org/2021/formulas/mathematics/college/kvms16583ogxth42yq4hc5rhkdzm4kpyhe.png)
![v=(8x^(2))/(2)+10x](https://img.qammunity.org/2021/formulas/mathematics/college/tb15r9q3w5fbj8g8agd699icrawiwy2zuw.png)
![v=4x^(2)+10x](https://img.qammunity.org/2021/formulas/mathematics/college/6tuvpvahghi8m9lzohgmeaa36919sr1st4.png)
Upon substituting these values in integration by parts formula, we will get:
![\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int\ (4x^2+10x)(1)/(x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/se490wfbxymwhkiz91s64r7s4fyb08p4bo.png)
![\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int\ (4x^2)/(x)+(10x)/(x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/adprz3idcvxlnondcvrpay1ehs773afaug.png)
![\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int 4x+10dx](https://img.qammunity.org/2021/formulas/mathematics/college/frlmunaaia0u7a1eyknch43tvoidhdkoe1.png)
![\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-((4x^(2))/(2)+10x)+C](https://img.qammunity.org/2021/formulas/mathematics/college/po02rrdu14l2wpdej03k2k1k7b7rdcn3rq.png)
![\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-2x^(2)-10x+C](https://img.qammunity.org/2021/formulas/mathematics/college/1yoi0axayhcsvo2s64hqwkobixhm0s615z.png)
Therefore, our required integral would be
.