57.6k views
2 votes
Exercise is mixed —some require integration by parts, while others can be integrated by using techniques discussed in the chapter on Integration.

∫(8x+10) ln (5x) dx.

User ZeeMonkeez
by
5.3k points

1 Answer

0 votes

Answer:


\text{ln}(5x)(4x^2+10x)-2x^(2)-10x+C

Explanation:

We have been given an definite integral
\int \left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx. We are asked to find the integral using integration by parts.

We will use Integration by parts formula to solve our given problem.


\int\ vdv=uv-\int\ vdu

Let
u=\text{ln}(5x) and
v'=8x+10.

Now, we need to find du and v using these values as shown below:


(du)/(dx)=(du)/(dx)(\text{ln}(5x))

Using chain rule, we will get:


(du)/(dx)=(1)/(5x)*5


(du)/(dx)=(1)/(x)


du=(1)/(x)dx


v'=8x+10


v=(8x^(1+1))/(2)+10x


v=(8x^(2))/(2)+10x


v=4x^(2)+10x

Upon substituting these values in integration by parts formula, we will get:


\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int\ (4x^2+10x)(1)/(x)dx


\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int\ (4x^2)/(x)+(10x)/(x)dx


\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-\int 4x+10dx


\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-((4x^(2))/(2)+10x)+C


\int\left(8x+10\right)\:\text{ln}\:\left(5x\right)\:dx=\text{ln}(5x)(4x^2+10x)-2x^(2)-10x+C

Therefore, our required integral would be
\text{ln}(5x)(4x^2+10x)-2x^(2)-10x+C.

User Thangaraj
by
5.8k points