Answer:
![(3)/(5) = e^(-0.5108)](https://img.qammunity.org/2021/formulas/mathematics/college/7x3cnctbsvd5o0n2mwy46zzyldyew9lcl7.png)
Explanation:
For this case we have the following expression:
![ln (0.6) = -0.5108](https://img.qammunity.org/2021/formulas/mathematics/college/79877aohj4bp6bn8bitqcjja8xa22z8yl1.png)
We can rewrite 0.6 like this
and we have this:
![ln((3)/(5))= -0.5108](https://img.qammunity.org/2021/formulas/mathematics/college/7z2p4upyvw4cdq7mrfr6kq7pymk8tkh5ps.png)
We can rewrite this expression like this:
, using properties of logs.
![log_c ((a)/(b))= log_c (a) -log_c (b)](https://img.qammunity.org/2021/formulas/mathematics/college/gf3ztoizwyr76dp9bztodnpsgop87vmmkv.png)
We need to remember that the natural log and the exponentiation with base the euler number e are inverse operations so if we apply esponents on both sides of the equation qe got this:
![(3)/(5) = e^(-0.5108)](https://img.qammunity.org/2021/formulas/mathematics/college/7x3cnctbsvd5o0n2mwy46zzyldyew9lcl7.png)
And that would be our final anwer for this case.