233k views
0 votes
Use integration by parts to find the integrals in Exercise.
∫xex dx.

2 Answers

6 votes

Answer:


xe^(x) - e^(x) +C

Explanation:

using the formular for integration by parts;

∫udv = uv -∫vdu ..............equ 1

in the equation below;


xe^(x)

u=x , dv =
e^(x)

du= 1 v=
e^(x)

Substitute into equ 1

∫udv =
xe^(x) - ∫
e^(x)dx

∫udv =
xe^(x) -
e^(x) + C

User Jasan
by
6.6k points
0 votes

Answer:


\displaystyle \int {xe^x} \, dx = e^x(x - 1) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integral] Integration Constant C

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {xe^x} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = dx
  3. Set dv:
    \displaystyle dv = e^x
  4. [dv] Integrate [Exponential Integration]:
    \displaystyle v = e^x

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {xe^x} \, dx = xe^x - \int {e^x} \, dx
  2. [Integral] Exponential Integration:
    \displaystyle \int {xe^x} \, dx = xe^x - e^x + C
  3. Factor:
    \displaystyle \int {xe^x} \, dx = e^x(x - 1) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Tom Smykowski
by
6.5k points