129k views
4 votes
Find the value of the integral that converges.
∫^[infinity]_4 ln(5x) dx.

User Chachan
by
4.8k points

1 Answer

7 votes

Answer:

Diverges

Explanation:

We have been given a definite integral
\int _4^(\infty )\:4ln\left|5x\right|dx. We are asked to determine whether the given integral converges or diverges.

We will use integral by parts formula to solve our given definite integral.


\int udv=uv-\int vdu

Let
u=ln(5x) and
v'=1.

Now we need to find du and v using above values.


(du)/(dx)=(d)/(dx)(ln(5x))

Apply chain rule:


(du)/(dx)=(1)/(ln(5x))*5=(1)/(x)


v'=1


v=x

Substitute back these values in parts by integration formula.


\int _4^(\infty )\:4ln\left|5x\right|dx=4\int _4^(\infty )\:ln\left|5x\right|dx


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:x*(1)/(x)dx)


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:1dx)


4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-x)

Let us compute the boundaries.


4(\infty*ln(5(\infty))-\infty)


4(4ln(5(4))-4)=31.93171


4(\infty*ln(5(\infty))-\infty)-31.93171

Since
4(\infty*ln(5(\infty))-\infty)-31.93171 is not a finite value, therefore, the integral diverges.

User Silvernightstar
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.