Answer:
Diverges
Explanation:
We have been given a definite integral
. We are asked to determine whether the given integral converges or diverges.
We will use integral by parts formula to solve our given definite integral.
![\int udv=uv-\int vdu](https://img.qammunity.org/2021/formulas/mathematics/college/q4fg2wnd0iq8hc1gworq00pliurnwvf3oe.png)
Let
and
.
Now we need to find du and v using above values.
![(du)/(dx)=(d)/(dx)(ln(5x))](https://img.qammunity.org/2021/formulas/mathematics/college/sqd3g0c36x37ifl9a048c4ait33b9stlal.png)
Apply chain rule:
![(du)/(dx)=(1)/(ln(5x))*5=(1)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/j9h9vhw8o0udn34pdyyshic6ziu62dzui8.png)
![v'=1](https://img.qammunity.org/2021/formulas/mathematics/college/4721lscsk0xusx16nmpieqsjvq3fhclm11.png)
![v=x](https://img.qammunity.org/2021/formulas/mathematics/college/8yp25g5ocymvr6l02w120g1zrxne01f6sl.png)
Substitute back these values in parts by integration formula.
![\int _4^(\infty )\:4ln\left|5x\right|dx=4\int _4^(\infty )\:ln\left|5x\right|dx](https://img.qammunity.org/2021/formulas/mathematics/college/8rot3w37turtjcjteui84w8aeak014nw04.png)
![4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:x*(1)/(x)dx)](https://img.qammunity.org/2021/formulas/mathematics/college/xixi3x0x69d46x46q30w22uoq8jzcuqdfp.png)
![4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-\int _4^(\infty )\:1dx)](https://img.qammunity.org/2021/formulas/mathematics/college/qod64tp0t65oe013sfpdbvxcrffqsd8plk.png)
![4\int _4^(\infty )\:ln\left|5x\right|dx=4(xln(5x)-x)](https://img.qammunity.org/2021/formulas/mathematics/college/dr92df5oouvuzd1y2fv4dtwl9fv7z4kiwn.png)
Let us compute the boundaries.
![4(\infty*ln(5(\infty))-\infty)](https://img.qammunity.org/2021/formulas/mathematics/college/ex934dvravyea2a0bbiisb47p77kqu4m3m.png)
![4(4ln(5(4))-4)=31.93171](https://img.qammunity.org/2021/formulas/mathematics/college/i61lp6towqxd5x9et2pw6o04r491kfe6kc.png)
![4(\infty*ln(5(\infty))-\infty)-31.93171](https://img.qammunity.org/2021/formulas/mathematics/college/n819qwc7coig1z1nhcg5rzfu7jasfbw2eq.png)
Since
is not a finite value, therefore, the integral diverges.